
AD—AO65 209 ARIZONA UNIV TUCSON DEPT OF COMPUTER SCIENCE F.’G 9/1 11TRANSFERRING rILES TO AN IBM MACHINE. (U)
At 78 R J ORGASS A FOSR—78 31499

UNCLASSIFIED TM—A PLA DI’ i AFOS R—TR —7 9—01 27 Nt.
I~~~i END
•0 OSTE

A08~ 20 __

U

I t~ I~ IlII~2~ 1112.5

~ IID~
2

lull ‘ • ‘
1.25 IIIII~ ilHI~

MICRO COPY RESOLUTION TEST CK~~T
NATIONAL BUREAU OF STANDARDS-I963-,~

‘~~~~~‘ TRANSFERRING FILES TO AN IBl~1 MACUINE ’~~
:~~~~~

•

/~ Richard ~ .~~orgass /
/ Technical)~~rnc No. APLAD14

~~ _ _

Z

~

7 8 /
(I I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

——~~~

ABSTRACT

Directions for using a sequence of programs
to write EBCDIC or ASCII files that can be read
by IBI•1 machines and other computers is described.I I The programs have been used to transfer files to
an IBM machine and to a HP—2000.

(I
1

~~~);j)~~~~~
/ / A ’ \ D D ~

* Research sponsored by the Air Force Office of Scientific
— Research yt~ r Force Systems Command , under Grant No.

~ AFOSR—78—34~~J The United States Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation horeon.

A IR ?ORC~ OPP1C’~ 0? $cI~ q?Ip~g RZSLtR.cI
~c :LcJ ; 0? T A ~~MI~r~r4L ~~ 

(u sc)
‘—I.‘ .~~ 7~ . ’ 1~~. i1  •~~P ’  t. ~ tt~ ~~eri r.vi.ud and X~$PPr;~~~-~~~~r ~~~~~ ~~~~~ .CL~ Ui X9O.1~ t7b). /Cu ~~

Approved to. publ 1o .~a~~ !~~ iTaohaLoal 
distribution unlimited.



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECURITY CLASS IF ICAT ION OF T HIS PAGE (II?, .,, Oat. Ent.r.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER ~2. GOVT ACCESSION NO. 3. RECIPiENT’S CA TALOG NUMBER

A~0SLTR. 7 9 - 0 1 27 ~I _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. TI T LE (~~id Stsbtitl.) 5. TYPE OF REPORT & PERIOO COVERED

TRANSFERRING FILES TO AN IBM MACHIrI I nt e r i m
6. P E R F O R M I N G ORG. R E P O R T N U M B E R

7. AU THOR (.) 0. CONTRACT OR GRANT

Richa rd J. Orgass AFOSR 78—3499 7~5)

9. P E R F ORM i NG ORG A NIZ A T I O N N A M E AND ADDRESS / 10. PROGRAM ELEMENT . PROJ ECT , T A SK

The U n i v er s i t y of Ar izona AR E A & WORK UNIT NUMBERS

Department of Computer Science 61102F 2304/A2
Tucson, Arizona 85721

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ju ly 28 , 1978
Air Force Office of Scientific Research/NM 13. NUMBEROF PAGES
BoIling AFB , Wash ington , DC 20332 7

1~ . MONITORING AGENCY NAME & AOORESSO I different Irom Control l ing Of f ice) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
15.. DE C L A S S I F IC A T I O N / D O W N G R A D I N G

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited .

17. DISTRIB.I’ ’” C rA EMENT (of the abat,ect entered in Block 20 , If d i f feren t from Report)

iN

In, iaiis - .1

_
us kif hicil. r~ —

18. SUPPLEMENTARY NOTES
~PA !OuCEI 0

I ~IJSNF UTIO~._ ~~~..._...

I —

..—
IIIT1IIITIS ~/AVAItA$II.ITT IND — —

19. KEY WORDS (Continue on rever s e side i f necessary and id en t i f y by b lock number)

:_~ st. AVAIL io~isi VL~IhL

20. AIS~T R A C T (Con tinue on revers e side i i nece sea ry and tden t i l y by block numb er)
—

irections for using a sequence of programs to write EBCDIC or ASCII files
that can be read by IBM machine s and other computers is described. The
programs have been used to transfer files to an IBM machine and to a HP—2000.

DD FORM
1 J A N 73 1473 UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N OF Tp~IS R A G E ‘When D.~. E.~nt.r.d)

f . ._ / _
~

• . ‘ . . .1

-~~~~~~
-- --~~~~~~

.
--- “-

-— .-— ~~~~~~~~~

1. Introduction

The programs described here were written in order to
make it possible for me to move my research software to
VPI. Since I assembled the programs, they have been used
by others so I decided to write documentation in case they
are useful to others.

I make no claims about the reliability of these programs
other than to report that tapes written following this
procedure have been successfully read on an IBM 370/158 and
on a IIP—2000. Beyond this, use them at your awn risk.

When moving files to an IBM machine, it’s important
to realize that two things we take for granted in the DEC—10
world don’t work in reasonable ways. (1) Each file has a
record length associated with it. Each record in the file
must contain exactly this many characters and each line is
padded with blanks to be the correct length. (2) Tabs are
not available to reduce the number of characters in a file.
Before transmitting files, the tabs that we regularly use
must be replaced by blanks.

The directions for using this set of programs is
rather complicated; it was planned as a single application
and not as a production system.

There are four steps to be completed to write a tape:
(1) Preparation of the files. (2) Creating a report on the
record lengths of the f i les. (3) Generating a command file
for CHANGE. (4) Writing a tape using CHANGE.

In the discussion that follows, I will use MUMBLE as
a f i le name with several extensions. When you run the
programs, replace all occurreces of MUMBLE with a file
name of your choice.

2. Preparing Files for Transmission

The f i rs t step in this sequence of events is to collect
all of the files that are to be written on a tape in a single
directory. SFD’s must be expanded . After you have collected
the files, some editing can save pain later.

For source program files, it’s a good idea to add a
new first line which is a comment containing the file name,
for example , in ALGOL :

COMMENT f i le APLO.SIM ;

This makes it easier to identif y files if there is confusion
at the other end .

.
~~~ -

—5

~
- - .—‘. ~~~~~~~~~~~~~~ - fl—.— —.— ..— .~ . . .— . . - - .. ~~~~~~~~~ ~~~~~~~~~~~~~~~ ,—. . _____________________________

.-.

~

-—

~

-

~

--- “



_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t 3.

The EBCDIC character set has one annoying property :
There arc no square brackets! Files going to an IBM machine
should have square brackets replaced with the appropriate
characters for the IBM implementation. For SIMULA , the
square brackets are replaced by parentheses; an ugly

- substitution! (Incidentiall y, when writing EBCDIC, CHANGE
converts left square bracket.s into underscores ( ) and
right square brackets into single quotes ( ‘ ) .J  —

If you are transferring SIMULA programs, the following
changes are sufficient: (1) Replace the characters \ =
with the four characters NE . (2) Replace all occurrences
of the character \ with the five characters NOT . (3) If
you used the DEC—10 specific comment character 1 , replace
all occurrences of this character with the keyword COMMENT.
Programs transformed in this way have been successfully
compiled using the IBM SIMULA compiler; changes to calls
to class infile are also needed for execution.

After you have edited your files as appropriate, it
is time to remove line numbers and to expand the tabs.
This can be done with the following:

.r pip
*all: *~~ */w/x/n all: * • *

At this point, you are ready to analyze your files to
determine the record lengths that are needed.

2. Computing Record Lengths and Reporting

The first thing to do is to create a file that contains
a directory of your files. Here is a good way to do this:

.r aplsf
TERMINAL. .XE’Y
APE -b DECsSYSTEIII+b0+APL+SF E1( 30)
2’T147)
CLEA R WS

FOO÷i ’ )LIB * 5 * ’

FOO~FOO[ j iFOO;))OUTPUT M t/MBLE .DIR
P00
)OL/TPIFT
) MON

Here, the characters typed with the APL ball are in the API.
character set, not ASCII !

_ _ _ _ _ _ _  

_ _ _ _ _  - - — .



— .-. - .- , - ~~~~~~~~~~~~~~~ ~~~
-----

~~~~

4.

The f i le specification in the)LIB command may be
any legal DEC—10 f i l e specification with scan and wild.
Of course , structures may be specified and ALL: is the
defaul t .

There may well be other ways to make a directory f i le
but the output format of this procedure is expected by
later programs .

The next step is to modif y the directory f i le to remove
two spurious lines. The following will do the job:

.so mumble.dir
Editing STDNUIUMBLE.DIR
*~~~

*eun
[STDN:MUMBLE.DIR] 1

:

This file, MUMBLE.DIR, is input to the program that
computes record lengths by counting characters in each
record of the file. Here is the terminal transcript:

,r csc:lrecl
LRECL —- Version 1, 5/31/78.
File List Input File: MUMBLE.DIR -

Report Output file: MUMBLE.RPT

When LRECL is in execution, an output file is written and
the same report is printed on the terminal to provide some
assurance that computation is in progress . There is one
line of output for each file. This line contains the
file name followed by 5 numbers: (1) The length of the
longest record in the file. (2) The number of records in
the file. (3) The number of characters in the file.
(4) The number of characters in a file with all records
padded with blanks to be as long as the longest record.
(5) The number of characters in a file with all records
padded with blanks to be as long as the maximum of 80 or
the length of the longest record.

Files with extensions APL, REL, ATR, EXE , SAV, HGH,
and LOW are viewed as binary files and their report line
will have all zeros. These files will not be written on
tape!

The last line of output gives the totals for columns
(2) to (5) and is followed by the message End of SAIL
execution .

S ~
S

~

- — - - - ~~~~~~~~~

_ _ _ _ _ _ _ _ _ . ~~~~~~~~~~~~~~~~~~~~~~~~~
. . .-~~


~~~1~~~~~~~~~~ • 
-

~~~~

5.

The file MUt4BLE.RPT that has been created is the input
to the next step. I also find it useful to print the
directory and report files:

.pri mumble.dir,mumble .rpt

4. Writing a Command File

The next step is to write a command file for the
program CHANGE. It is possible to write either EBCDIC
or ASCII files for reading on an IBM machine. There are
two different directions, given below.

It is possible to write ASCII files and then convert
them to EBCDIC at the destination IBM machine. This has
the advantage that the translation will be done in accord
with the local translation from ASCII terminal characters
to EBCDIC. The djsadvantaae is that not all IBM installations
support ASCII . To be safe, write EBCDIC but if you can
find out if your destination machine supports ASCII this
is better because CHANGE does some funny translations.

4.1 Writing EBCDIC Tapes

For EBCDIC, comands to write 9-track EBCDIC at 1600
bpi are generated. An APL workspace is used to write
the command file. Here is a transcript:

•r aplsf
TERMINAL. • KEY
5 • , • -

CLEA R WS
)LOA D CSC :CONVER

SA VED
COMMA ND FILE GENERATOR .
INPUT FILE: MUMBLE.RPT
OUTPUT FILE: MUMBLE .CMD
NUMBER OF COPIES ON TAPE : 5

The response to the last query is the number of copies of
each f i le that is to be written on the tape. In this case ,
5 repitions of all the f i les will be written on the tape.
That is, all of the files named in MUMBLE.DIR will be
written, then this writing will repeat 4 more times.

When the program is running, each of your file names
— will be written followed by a cumulative total of the

number of feet of tape that are required. This number is

- .- - —-——~. ~~. . .-- .~~~,.• -. . ,.— —5’ —~~~~~ -— We — ••5__ ?~~~
m—-~~~~m~~. ~~~~~~~~~~ — , — er - ‘~~~~~~-vy ’ 1%~~~~ — ~~~~~~ ~~~ —~~--.-

_ _ _ _ _ _ _
_

_
—

-

6.

• computed by counting the number of characters to be writ ten
and computing the length of tape to write this many characters.
In addition , one inch is allowed for the inter record gap.
It appears to be a reliable estimate.

After all of the files are reported, the command file
is written and the message

COMMA ND FILE CREA TED .

is written on the terminal. After this, return to the
monitor with the command :

)MO N

At this point , you may want to change the number of
copies written on tne tape. Just before the command)MO N ,
enter the line

CON VER T~COMMA 1/PS

and then go back to the beginning of this section.

4.2 Writing ASCII Tapes

For ASCII , commands to write 9—track, 800 bpi tapes
are generated. The files contain 8—bit ASCII (with leading
bit 0) and all files are padded to the length of the
longest record, There are no carriage return — line feed
pairs between lines!

The terminal transcript is almost the same as in 4.1.
The initial segment, which is different follows:

.r aplsf
TERMINAL. .XEY...
CLEA R WS

)LOAD CSC :CONV2

Notice that the single difference is that another workspace
is loaded !

• 5.Writinq the Tape

Finally, it ’s time to submit a batch job to write
• the tape you wanted in the first place. All that is

needed is a very simple CTh file. They are described below.

-~~~~~~~~~~~~~~~~~~-.-~— -~~~~~ i- ~~~~~~~~~~~~~~~~~
- -

~~~
--

~~~~~~~~~~~~~~ : ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
. , .

~~~~

.

___________ A



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .~~~~~~ - - ---~~~----—-

7.

5.1 Writing EBCDIC Tapes

Using your favorite editor, create a file named
MUMBLE.CTL with the following contents:

•mount m9 :mtape/reel : xxxxx/den:16 00/we: yyyyy
.r pub:change
*he]p
*mumble • cmd@
*exit
•dismount mtape:
•r summary

Here, xxxxx is the reel number of the tape you are going
to write and yyyyy is the password you have assigned to
the tape. Note that both the tape name and the density
must match this mount command . If you want a different
density, replace all occurrences of 1600 by your density
in the text of the function CONVERT t~COMMAND S before
following the directions in Section 4.

At last, submit the file:

.submit murnble.ctl/tixne:05:00

The listing in the LOG file will contain a complete description
of each file and the form in which it is written on the
tape. The HELP file that is printed before the individual
file descriptions provides enough information to understand
the log.

5.2 Writina ASCII Tapes

Using your favorite editor, create a file named
MUNBLE.CTL with the following contents:

•moun t m9:mtape/reel:xxxxx/den:800/we:yyyyy
•r pub:change
*help
*numhle cmd@
*exit
•dismount mtape :
.r summary

Here, xxxxx is the reel number of the tape you are going
• to write and yyyyy is the password you have assigned to

the tape. Note that both the tape name and the density
must match this mount command. If you want a different
density, replace all occurrences of 800 by your density
in the text of the function CON VER T~6COMMi1NDS before
following the directions in Section 4. Submit the CTL
file as in 5.1. 

-“ -- .— --•-• -• -~~~~~--~~~~~~~~~~~~~ — ---~~~---- --- ~~~, . ._ _ _ _ _ _ _ _


